
Bridging the gap between knowledge
modelling and technical documentation
Engage subject-matter experts to contribute to knowledge

management and help them write accurate & correct
documentation.

Bert Willems

FontoXML
�EHUW�ZLOOHPV#IRQWR[PO�FRP!

Abstract

!is paper describes an architecture which allows subject-
matter experts and the systems to co-create both structured
content and knowledge models. !e proposed architecture
creates a knowledge model from structured content which, in
turn, is queried to validate and improve the accuracy and
correctness of structured content leveraging the expertise of
the subject-matter expert. !e proposed architecture
effectively describes a feedback loop.

1. Introduction

Writing content is hard. One has to understand the
subject and the intended target audience and one must
be able to express oneself in written word.

Fortunately, one does not usually stand alone. !ere
is software to support one’s writing endeavors. A well-
known piece of software integrated into virtually any text
editor out there is the spell checker. A spell checker
typically works on individual words without looking at
the meaning: as long as the word is spelled correctly, it is
happy. More advanced are grammar checkers, which
typically work by looking at sentences as a whole. !ey
help authors write sentences that are correct from a
grammatical perspective as prescribed by a particular
language.

Readability checkers help authors write sentences that
are easy to read. You don’t want to squander your
exquisite phrasing if your target audience is 6 years old.
Several industries have defined a standardized subset of
languages in order to improve readability, like ASD
STE-100 Simplified Technical English.

However, none of the above prevents authors from
writing complete and utter nonsense as long as it is

spelled well, grammatically correct, and easy to read.
Although this may seem like a benefit in some cases, in
technical documentation it is not. An important use of
documentation, whether online or printed, is to help
users to do their work as efficiently as possible.

!is paper proposes a solution to help authors to
write accurate and correct documentation by bridging the
gap between knowledge modelling and technical
documentation. !e first part of this paper describes a
general architecture. In the second part a practical
implementation is explored to prove the prosoed
architecture can be built. !e final part holds the
conclusions and future work.

2. Structured Content feedback
loop architecture

Technical documentation, or more generally speaking
body of knowledge, contains valuable information from
which knowledge models can be build. !ere is a lot of
research in the area of automated extraction of facts to
build knowledge models. Most of them rely on training
sets put together by domain experts.

Structured content is usually written by subject-
matter experts, who are domain experts themselves or act
as proxies to experts and therefore are qualified to
contribute to those knowledge models. !is means that
structured content is an excellent source of knowledge to
build knowledge models from. Extracting facts from
content, structured or not, is a well studied field.

!ere are numerous papers published which describe
how information can be mined from content and how
that information can be queried. However, none of those
approaches are a 100% accurate, just like humans.

GRL����������;0//RQGRQ���:LOOHPV��Page 74 of 102

Figure 1. Loop overview

Although the lines are blurring, in general computers
are better at repetitive tasks while humans are better at
unstructured problem-solving and empathy. !is creates
an interesting opportunity: allow the subject-matter expert
and the system to co-create both structured content and the
knowledge model at the same time.

Figure 1, “Loop overview” illustrates how ideas and
knowledge are exchanged between subject-matter experts
and systems:
We propose an architecture where the system ingests
structured content in the form of XML from which a
knowledge model is created. From this created

knowledge model the system starts to suggest
improvements to the subject-matter expert. !e subject-
matter expert evaluates the provided suggestions and,
once accepted, improves the structured content. !e
improved structured content will in turn improve the
created knowledge model, effectively closing a feedback
loop.

!e type of suggestions given by the system,
dependents on the structure of the knowledge model and
the algorithms used. In the problem space of technical
documentation suggestions may include missing

Page 75 of 102

Bridging the gap between knowledge modelling and technical documentation

prerequisites, opportunities for reuse and of course
missing markup.

Even if the subject-matter expert decides to reject a
suggestion, it is valuable. Consider the subject-matter
expert rejecting a suggestion for a spelling correction: it
might be the case that the word is missing from the
dictionary or it should’ve been in the taxonomy. Some
algorithms take counter examples as input to optimize
their output. !is means it is worthwhile to ask the
subject-matter expert to provide feedback and update the
knowledge graph accordingly, hence a secondary
feedback loop.

3. Example implementation

!is section describes an example implementation of the
feedback architecture proposed in the previous section.
!e implementation is intentionally simple and straight-
forward but proves the loop can be built.

3.1. Problem example

Have a look at the following abbreviated example, taken
from a procedure in a manual of our fictional ACME
router:

3URFHGXUH��/LVW�DOO�WKH�ILOHV�LQ�WKH�FXUUHQW

�����������ZRUNLQJ�GLUHFWRU\

6WHS����([HFXWH�WKH�FRPPDQG�nGLUo�

5HVXOW��$Q�HQXPHUDWLRQ�RI�DOO�WKH�ILOHV�LQ�WKH

��������FXUUHQW�GLUHFWRU\�

An IT professional can, even without intimate
knowledge of the ACME router, name at least a few
(potential) errors in the seemingly simple snippet:

1. !e procedure requires a terminal to be opened,
which should have been encoded as the first step or as
prerequisite.

2. It is unlikely the command is called ‘dir’ since that is
Windows specific, it is more likely to be called ‘ls’
since it is more likely that the router is based on
Linux.

In order to reason in the same way an IT pro can, the
system requires the following knowledge to be available:

1. !e `dir` command requires a terminal to be opened.
2. !e `dir’ and `ls` commands are directory listing

commands.
3. !e `dir` command is Windows specific.
4. !e `ls` command is Linux specific.

5. !e ACME routers run Linux.

3.2. Implementation

In order to create the feedback loop, the implementation
works in two stages. !e first stage creates the knowledge
model from reference content. !e second stage validates
task-based content against the reference content. Where
XML is given it is based on OASIS DITA (Oasis DITA
1.3).

3.2.1. Input reference documents

!e following documents are used as reference
documents from which the knowledge graph will be
created. !e areas that are relevant for creating the
domain model are italicized.

�UHIHUHQFH�LG �URXWHU�!

���WLWOH!$&0(�5RXWHU��WLWOH!

���SURORJ!

�����SURGLQIR!

�������HPSKDVLV!�SURGQDPH!$&0(�5RXWHU��SURGQDPH!

�������SODWIRUP!/LQX[��SODWIRUP!��HPSKDVLV!

������SURGLQIR!

����SURORJ!

��UHIHUHQFH!

�UHIHUHQFH�LG �OV�!

���WLWOH!

�����HPSKDVLV!�FPGQDPH!OV��FPGQDPH!��HPSKDVLV!

����WLWOH!

���SURORJ!

�����SURGLQIR!

�������HPSKDVLV!�SURGQDPH!$&0(�5RXWHU��SURGQDPH!

�������SODWIRUP!/LQX[��SODWIRUP!��HPSKDVLV!

������SURGLQIR!

����SURORJ!

���UHIERG\!

�����S!7KH

����������HPSKDVLV!�FPGQDPH!OV��FPGQDPH!��HPSKDVLV!

�������LV�D�FRPPDQG�XVHG�IRU��HPSKDVLV!

����������V\VWHPRXWSXW!GLUHFWRU\

������������OLVWLQJ��V\VWHPRXWSXW!��HPSKDVLV!�

�������,W�PXVW�UXQ�LQ�WKH��HPSKDVLV!

����������XLFRQWURO!WHUPLQDO��XLFRQWURO!

��������HPSKDVLV!���S!

����UHIERG\!

��UHIHUHQFH!

�UHIHUHQFH�LG �GLU�!

���WLWOH!

Page 76 of 102

Bridging the gap between knowledge modelling and technical documentation

�����HPSKDVLV!�FPGQDPH!GLU��FPGQDPH!��HPSKDVLV!

����WLWOH!

���SURORJ!

�����SURGLQIR!

�������HPSKDVLV!�SURGQDPH!$&0(�5RXWHU��SURGQDPH!

�������SODWIRUP!:LQGRZV��SODWIRUP!��HPSKDVLV!

������SURGLQIR!

����SURORJ!

���UHIERG\!

�����S!7KH

�������HPSKDVLV!

���������FPGQDPH!GLU��FPGQDPH!

��������HPSKDVLV!�LV�D�FRPPDQG�XVHG

������IRU

�������HPSKDVLV!

���������V\VWHPRXWSXW!GLUHFWRU\

������������������������OLVWLQJ��V\VWHPRXWSXW!

��������HPSKDVLV!�

������,W�PXVW�UXQ�LQ�WKH

�������HPSKDVLV!

���������XLFRQWURO!WHUPLQDO��XLFRQWURO!

��������HPSKDVLV!�

������S!

����UHIERG\!

��UHIHUHQFH!

Note

Some elements were removed from the documents for
brevity.

Note

!e examples given do not explicitly encode the “must
run in a terminal” relation. !is cannot be expressed
well using standard DITA. Either specialization is
needed or advanced text analysis software.

3.2.2. Knowledge graph

In order to validate the correctness according to the case
described in the example section, the following
knowledge must be captured by the model:

1. product to platform (used to determine the platform)
2. command to platform (used to determine whether a

command is available)
3. command to result (used to infer the correct

command based on platform)

4. command to required uicontrol (used to infer that a
terminal is needed in order to perform the command)

!e knowledge model is defined as an RDF graph. !e
graph is stored in a triple store, which allows semantic
queries.

Constructing the knowledge graph

Using a simple extraction method the following triples
can be extracted:

��DFPH�URXWHU!

��UXQV���OLQX[!��

��OLQX[!

��D���RSHUDWLQJ�V\VWHP!��

��ZLQGRZV!

��D���RSHUDWLQJ�V\VWHP!��

��OV!

��D���FRPPDQG!��

��UXQV2Q���OLQX[!��

��UHTXLUHV8,���WHUPLQDO!��

��RXWSXWV���GLUHFWRU\�OLVWLQJ!��

��GLU!

��D���FRPPDQG!��

��UXQV2Q���ZLQGRZV!��

��UHTXLUHV8,���WHUPLQDO!��

��RXWSXWV���GLUHFWRU\�OLVWLQJ!��

3.2.3. Task document

!e following document is validated against the
constructed knowledge graph:

�WDVN!

�WLWOH!/LVW�DOO�ILOHV�DQG�IROGHU���WLWOH!

���SURORJ!

�����SURGLQIR!

�������SURGQDPH!$&0(�5RXWHU��SURGQDPH!

������SURGLQIR!

����SURORJ!

���WDVN%RG\!

�����VWHSV!

�������VWHS!

���������FPG!([HFXWH��FPGQDPH!GLU��FPGQDPH!���FPG!

��������VWHS!

������VWHSV!

�����UHVXOW!$Q�HQXPHUDWLRQ�RI�DOO�WKH�ILOHV

����LQ�WKH�FXUUHQW�GLUHFWRU\���UHVXOW!

����WDVN%RG\!

��WDVN!

Page 77 of 102

Bridging the gap between knowledge modelling and technical documentation

3.2.4. Validating the task

Based on the given knowledge model and the task
document, the system is able to find two inaccuracies:

1. !e ‘ls’ command should’ve been used instead of the
‘dir’ command.

2. A terminal is required in order to execute the
command.

Finding the correct command name

In order to find the correct command name the
following traversals need to be made in the knowledge
graph:

Input:

1. Product ‘ACME Router’.
2. Command ‘dir’.

Traversals:

1. Infer the ‘ACME Router’ runs on ‘Linux’.
2. Infer the ‘dir’ command ‘is available on’ ‘Windows’.
3. Infer the ‘dir’ command ‘outputs’ a ‘directory listing’.
4. Infer the ‘ls’ command also ‘outputs’ a ‘directory

listing’ AND ‘is available on’ ‘Linux’.
Based on the inputs and travels of the knowledge graph
the system can return two facts to the user:

1. !e command ‘dir’ is not available on ‘Linux’ and
therefore cannot be correct.

2. !e command ‘ls’ is a substitute of ‘dir’ and is available
on ‘Linux’ and therefore is a suitable alternative.

Based on the inputs and traversal of the knowledge
graph, the system can return the fact that the `dir`
command should have been `ls` command. See Figure 2,
“Replace command suggestions” for the suggestion.
Approving the suggestion will change the XML into:

�FPG!([HFXWH��FPGQDPH!OV��FPGQDPH!���FPG!

Figure 2. Replace command suggestions

In order to find the missing prerequisite of the ‘ls’
command, the presence of a ‘terminal’, the following
traversals need to be made in the knowledge graph:

Input:

1. Command ‘ls’.

Traversals:

1. Infer the ‘ls’ requires a ‘terminal’.

Check:

1. Check whether ‘terminal’ is referenced as a uicontrol.

Based on the inputs and traversal of the knowledge
graph, the system can return the fact that a terminal is
required. See Figure 3, “Replace command suggestions”
for the suggestion. Approving the suggestion will insert
the following XML snippet:

�SUHUHT!2SHQ�D

�����������XLFRQWURO!WHUPLQDO��XLFRQWURO!�

��SUHUHT!

Figure 3. Replace command suggestions

Page 78 of 102

Bridging the gap between knowledge modelling and technical documentation

Resulting task

Now the resulting task is correct according to the
available knowledge in the graph:

�WDVN!

���WLWOH!/LVW�DOO�ILOHV�DQG�IROGHU���WLWOH!

���SURORJ!

�����SURGLQIR!

�������SURGQDPH!$&0(�5RXWHU��SURGQDPH!

������SURGLQIR!

����SURORJ!

���WDVN%RG\!

�����HPSKDVLV!�SUHUHT!2SHQ�D

�������XLFRQWURO!WHUPLQDO��XLFRQWURO!���SUHUHT!

������HPSKDVLV!

�����VWHSV!

�������VWHS!

���������FPG!([HFXWH

�����������HPSKDVLV!

�������������FPGQDPH!OV��FPGQDPH!

������������HPSKDVLV!���FPG!

��������VWHS!

������VWHSV!

�����UHVXOW!$Q�HQXPHUDWLRQ�RI�DOO�WKH�ILOHV

����LQ�WKH�FXUUHQW�GLUHFWRU\���UHVXOW!

����WDVN%RG\!

��WDVN!

Adding validation to the <result> of the task is left as an
exercise to the reader of this paper.

4. Conclusions & Observations

As shown by the simple implementation presented in the
previous section it is straightforward to derive a
knowledge model based on reference content. Equally
straightforward is the use of that knowledge model to
validate task-based content for accurateness and
completeness. !is proves that the structured content
feedback loop can be created.

However the implementation does not scale well:
both the mapping to the knowledge model and the
definition of the queries are done by hand. It is
essentially an hard-coded rule engine.

!e XML vocabulary used in the implementation
example, does not support encoding all the relations out
of the box. !e DITA vocabulary does have a formal
extension mechanism but, extending the vocabulary to
support an evolving knowledge model does not scale
either.

5. Future work

!ere is quite some work to be done in all the parts
which make up the proposed system.

!e first step is to remove the need for hard-coded
rules by leveraging Information Extraction, a field of
study which includes Part-of-speech (POS) tagging,
phrase identification and word classification [1] and
PATTY as described in Nakashole's 2012 PhD thesis
[2] . Furthermore the mapping can be enhanced with the
knowledge that can be mined from the XML schema as
described in "Semi-Automatic Ontology Development"
[3] and GRDDL [4].

!e second step is to use Relational Machine
Learning to query the knowledge model and provide
useful suggestions and corrections to the subject-matter
expert. !e paper "A Review of Relational Machine
Learning for Knowledge Graphs" [5] provides an
excellent overview of that field of study.

Another step is to develop the software architecture
based on OASIS Unstructured Information Management
Architecture. !is allows us to leverage and integrate
existing components that are developed by third parties
rather than developing everything ourselves.

!e last, and perhaps the most important, step is to
design and build an easy-to-use user interface. !e
suggestions must be easily understood and displayed in a
relevant context to allow subject-matter experts to make
quick and accurate decisions.

Page 79 of 102

Bridging the gap between knowledge modelling and technical documentation

Bibliography

[1] Information Extraction and Named Entity Recognition. Christopher Manning. Stanford University.
https://web.stanford.edu/class/cs124/lec/Information_Extraction_and_Named_Entity_Recognition.pdf

[2] Automatic Extraction of Facts, Relations, and Entities for Web-Scale Knowledge Base Population. Ndapandula T
Nakashole.
http://nakashole.com/papers/2012-phd-thesis.pdf

[3] Semi-Automatic Ontology Development. Processes and Resources. Maria Teresa Pazienza and Armando Stellato.
doi:10.4018/978-1-46660-188-8

[4] Gleaning Resource Descriptions from Dialects of Languages (GRDDL). Dan Connolly. 11 September 2007. World
Wide Web Consortium (W3C).
http://www.w3.org/TR/grddl/

[5] A Review of Relational Machine Learning for Knowledge Graphs. Maximilian Nickel, Kevin Murphy, Volker Tresp,
and Evgeniy Gabrilovich. 25 September 2015.
https://arxiv.org/pdf/1503.00759.pdf

Page 80 of 102

Bridging the gap between knowledge modelling and technical documentation

