Soft validation in an editor environment

Schematron for non-technical users

Martin Middel
FontoXML
<martin.middel@fontoxml.com>

Abstract

To allow the use of Schematron[1] in a quickly changing environment like
an editor, understandability is crucial. An author may not be an XML
expert, so they must be guided in resolving the messages generated by Sche-
matron.

A good understandability rests on two pillars: performance and user
interface. An author needs constant feedback on the current state of the soft
validation. The author must know which places in the document need atten-
tion, and how to resolve them. The report must then update as soon as possi-
ble to enable the author to see the result of a modification they just made.

To ensure good performance, a number of technical problems have been
solved, this includes a novel dependency tracking system.

1. Introduction

FontoXML is an editor for XML content, used by non-technical authors. At this
moment, FontoXML offers a standard editor for DITA 1.3! and can be configured
to support any schema including TEI?, JATS?, Office Open XML* and a number of
DITA specializations.

Since non-technical authors have no knowledge of XML or the schema, they
will not understand nor be able to fix invalid documents. Therefore we guide the
author to prevent them from creating invalid documents; we ensure loaded docu-
ments remain valid at all times. Valid in this context means both well-formed (no
unclosed tags), but also schema-valid (titles can not contain list items).

However, some restrictions should not always be enforced. Constraining the
length of a title will destroy usability, because typing text in it will suddenly be
disabled. Additionally, schema restrictions may need to be relaxed in various use
cases. For these reasons, we have implemented soft validation in the editor, which
essentially are recommendations instead of requirements.

! http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part3-all-inclusive.html
2 http://www.tei-c.org/index.xml

3 https://jats.nlm.nih.gov/index.html

4 http://www.ecma-international.org/publications/standards/Ecma-376.htm

19

Soft validation in an editor environment

2. The case for soft validation

In our experience adapting the FontoXML editor for various clients, we have seen
two major cases for soft-validation:

1. Adapting content from a permissive schema used for editing to a strict
schema used for publishing content.
One of our clients (automatically) imports content from a word processor.
They can not automatically tag most elements, apart from distinct paragraphs,
so this enrichment is a manual process. After the enriching phase of the work-
flow, all elements must be tagged: title paragraphs must be title paragraphs,
abstract paragraphs must be abstract etc. Using the stricter schema as soft vali-
dation on top of the permissive schema provides valuable feedback during the
enrichment process.

2. Schema with varying publication-specific constraints.

Another client maintains a very high number of different schemas, each
titting their unique purpose. A schema for writing a book for teaching a lan-
guage is different from an exercises book for learning math.

To allow the same XML pipeline to be used for all of these schemas, the
actual schemas are the same. Different soft-validation rules are enforced over
them, in order to tailor to specific publication needs. This also allows for easy
upgrades from one version of the (overlaying) schema to the next: the docu-
ment is always schema-valid.

Soft-validation can also be used to guide an author into adhering to a style guide,
such as writing short titles or paragraphs. These rules can often be expressed as
textual constraints on certain elements (such as maximum character count or min-
imum word count).

20

Soft validation in an editor environment

Document from
external source

y

Automatic conversion Document in loose schema Manual enriching

Schema changes Document in strict schema

3

Published content

3. Schematron

Schematron is a widely used standard for performing 'soft-validation': describing
certain structures in XML which are technically valid, but deemed undesired.
In short, Schematron is a declarative format that works like this:

* Define “rules”, selecting nodes which should be validated.
* Per rule, define reports and asserts testing these nodes.

* Both rules and tests are XSLT patterns, which are very similar to and can be
transformed to standard XPath queries without problems.

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
<sch:title>An example schema</sch:title>
<sch:rule context="p">
<sch:assert test="@class">A paragraph must have a class</sch:assert>
</sch:rule>
</sch:schema>

The rule context and test expressions can be transformed to a single XPath[2]
query which can identify nodes that would trigger the assertion or report. For
performance, it does not make much sense to split these queries: an assert for a
body asserting a title node is present somewhere in the document still introduces
a full-document-scan.

The Schematron reference implementation is based on XSLT. As FontoXML is
implemented in pure JavaScript and aims to have as few server-side components

21

Soft validation in an editor environment

as possible, there are not many usable XSLT processors around. Also, because
FontoXML is an editor, we expect many, generally very localized changes to hap-
pen very frequently. We do not want to fully process a large document multiple
times per second. In order to provide a fluid user experience, we need the editor
to update with a rate of 60 frames per second, just like a video game. This leaves
us with a budget of roughly 16ms (1000ms / 60) per frame. Within this frame
budget we need to do all the JavaScript updates and still allow time for the
browser to do its layout and paint work. Another concern is the size of both docu-
ments and schemas: one of our clients loads documents up to 2MB in size,
another client uses up to 3500 (automatically generated) Schematron rules. Fully
processing these documents and their rules simply won't scale.

Because of these concerns, we have decided to roll our own implementation,
optimized specifically for evaluating Schematron rules in an editor environment.

4. Implementation

4.1. Requirements

We decided to build our own optimized Schematron engine with the following
concerns:

* Must be client-side, fully written in JavaScript
* Must be real-time (reactive to changes in the document)
* Must have quick-fix functionality (understandable by non-XML experts)

* Must not hold the Ul thread hostage (remember: Javascript is single threaded)
We aim to only work continuously for 16ms. Any more than this will make
the browser framerate drop to below 60FPS.

4.2. Written in JavaScript, running client-side

The Schematron engine should run client-side so that it can provide feedback as
fast as possible and does not introduce a server-side dependency. The editor
should be able to run off-line: network latency and enterprise firewalls are largely
not in our control. Besides this, the battery cost of a GSM or WiFi modem on
mobile devices has to be taken into account.

The best XSLT processor in JavaScript at the time or writing is Saxon-JS°. For
us, using this approach is not an option because of scalability. The naive XSLT-
based approach would require the entire document to be processed after every
change. As some of our clients work with XML documents ranging in the mega-
bytes, this approach becomes infeasible due to performance constraints. The

5 http://www.saxonica.com/saxon-js/index.xml

22

Soft validation in an editor environment

XSLT is not in our control, and we can not say anything about it. Ideally, we'd
want to regard it as a black box.

A Schematron engine works using XSLT expressions, which are an extension
of XPath queries. There are a few JavaScript XPath implementations available:

* Google’s wicked-good-xpath®, which is an XPath 1.0 implementation.
e XPath-]$7, also an XPath 1.0 implementation.
e XPath.js®, an XPath 2.0 implementation.

We also had the choice of building our own XPath engine, which would allow for
anything we'd ever want. Because of our requirements stated earlier, we want to
have tight control over the performance characteristics of the XPath implementa-
tion. We also wanted to use the same XPath implementation in other parts of the
FontoXML editor and related products. We therefore decided to invest the time
and build our own. This ensures we get the control we want, and also enables us
to more easily implement any further optimizations or extensions in the future.
For this implementation, we decided to implement an XPath 3.1[5] engine. This is
the latest iteration of the XPath standard, which is currently in the candidate rec-
ommendation phase.

4.3. Real-time updates

Any change to the XML document could cause any of the Schematron rules to
have different results. Because the size of the document is variable and could be
very large, re-evaluating every rule on the entire document after every change
would take too much time. We need a way to reduce the amount of Schematron
rules that need to be to re-evaluated after each edit.

Let's take the XPath query @someAttribute eq 'value'. Given the element
<element someAttribute="value"/>, we can see it will evaluate to true ().

If we change the value of this attribute to <element someAttribute="some
other value"/>, we can see it will evaluate to false ().

If, instead, we change the node by adding an attribute to create <element
someOtherAttribute="meep" someAttribute="value"/>, we can see the XPath
will not change its' original value: true ().

We could say that the result of an XPath query is determined by the parts of
the DOM it ‘looks at’. These are its dependencies. These dependencies can be
invalidated by changes on nodes. For instance, to be able to determine the result
of the ancestor axis, the parent relation of all ancestors will be evaluated, this will
introduce a dependency on the parent-child relation of these nodes.

6 https://github.com/google/wicked-good-xpath
7 https://github.com/andrejpavlovic/xpathjs
8 https://github.com/ilinsky/xpath.js

23

Soft validation in an editor environment

The DOM standard defines the MutationObserver interface to allow a con-
suming API to react to changes in the DOM. It does this by recording each muta-
tion as an object, called a MutationRecord[3], and exposing these objects for
turther processing after the mutation completes:

{
type: 'childList' | 'attribute' | 'characterData',
target: Node,
addedNodes: Node[],
removedNodes: Nodel[],
nextSibling: Node?,
previousSibling: Node?,
attributeName: String?,
oldvValue: String?
}

The same interface is implemented by our editor to track changes made in an
XML document. These records are used throughout the editor, for instance, for
implementing the undo/redo functionality.

By tracking the dependencies of queries and using MutationRecords, we can
make it so that for any given edit, only the affected Schematron rules (i.e. XPath
queries) has to be re-evaluated, instead of all of them. For example, any rules on
the presence of certain elements do not have to be evaluated if we're only work-
ing on an attribute. This removes the bulk of the processing needed to keep the
Schematron results up to date.

We store the dependencies for our XPath queries in a two-level Map data
structure:

node -> type -> queryl]

This way, given a MutationRecord, we can look up the possibly affected queries
in constant time (0 (1)).

We update this data structure whenever we run an XPath query. First, we
transform the XPath string to an abstract syntax tree using a parser generated
with the wonderful peg.js parser generator’. We then compile this syntax tree to a
set of DOM traversals.

By using a facade for accessing all DOM relations, we can record the traversed
relations as dependencies of a specific operation such as the evaluation of an
XPath query. As a bonus, this facade makes the engine independent of the inter-
face of any specific DOM implementation, as it can be used as a translation layer.

The facade simply consists of functions such as the following:

class DependencyTrackingDomFacade {
getChildNodes (node) {

? https://pegjs.org/

24

Soft validation in an editor environment

registerDependency (
this. dependenciesByNodeIdAndKind,
node,
'childList'");
return this. dom.getChildNodes (node) ;
}
getParentNode (node) {
var parentNode = this. dom.getParentNode (node);
if (parentNode) {
registerDependency (
this. dependenciesByNodeIdAndKind,
parentNode,
'childList');
}
return parentNode;
}
getAttribute (node, attributeName) {
registerDependency (
this. dependenciesByNodeIdAndKind,
node,
'attribute');
return this. dom.getAttribute (node, attributeName);
}
getData (node) {
registerDependency (
this. dependenciesByNodeIdAndKind,
node,
'characterData');
return this. dom.getData (node);
}
}

This dynamic analysis of an XPath query allows us to regard the XPath as a black
box. We do not impose any additional requirements to the structure of XPath
expressions, determining for instance streamability. It also does not block further
improvements such as static analysis [4]. This approach for dynamic analysis is
simple to implement. Although it does not make hard XPath queries easier to
evaluate, it does provide a base for memoization!?. In the future, we will want to
use static analysis to provide partial queries, indices or query simplification.

4.4. Putting everything together

Given the following Schematron snippet:

1®Memoization is a technique used to reuse the result of a function if its' parameters are the same as a
previous execution.

25

Soft validation in an editor environment

<sch:rule context="/html/body/div/p">
<sch:assert test="not (@class) or Qclass=('title', 'intro')">
A paragraph should have either no class or the title or intro class.
</sch:assert>
</sch:rule/>

Combining the context and test will result in the following query for reportable
nodes:

/html/body/div/p[not (not (@class) or @class=("title", "intro"))]

Running this query will make the XPath engine 'look at' a number of properties of
DOM nodes. This gives us the following dependencies:

* html ->‘childList’

* body ->‘childList’

¢ Every div in the body -> ‘childList’
* Every p in these divs ->“attribute’

This query will be triggered for re-evaluation by some of the following changes in
the DOM:

¢ Adding a new body to the html element
This changes the childList of the html element, and can possibly introduce
new div elements with new p elements.

* Adding or removing divs
* Adding or removing paragraphs in these div elements
¢ Changing the class attribute on the paragraphs

This query will not be affected by changes like editing the contents of a para-
graph or adding a title element in the head element of the html element.

Note that if the dependencies of a query have changed, it does not mean the
result of the query has changed: @someAttribute => string() => starts-
with('abc') can evaluate to true for many different values of @someAttribute:
'abc', 'abcd', 'abcX', etc.

This causes a number of false positives. In the example given above, the fol-
lowing changes will also trigger a re-evaluation:

* Adding a head element to the html element (the childList of html changes)
* Moving around div elements in the body (the childList of body changes)

These will never change the result of this query, causing a needless re-evaluation.
However, as these actions do not happen as frequently as typing text in a para-
graph, the impact on performance of this limitation is minimal. The dependency
tracking approach prevents re-evaluation of most queries, most of the time. This
is sufficient to provide acceptable performance for our requirements. In the future
we plan to investigate memoizing intermediate results in order to prevent full re-

26

Soft validation in an editor environment

evaluations, stopping evaluation if a part of the query resolves to the same result
as before.

This also works in a subtly different way: the set of dependencies of a query
may change, while the result remains the same. For example, take a query con-
taining the conditional expression: €A or @B. Because the or expression may
never evaluate @B if attribute A is present, removing this attribute forces it to also
look at the other. The end result may remain the same, but the DOM has been
traversed in a different way, causing a different set of dependencies.

4.5. Quick fix

Now that we can generate reports, and re-evaluate them quickly, we can move on
to enabling users to fix any issues that have been detected.

The FontoXML editor uses the concept of 'operations’, small units of function-
ality describing things like opening a modal, setting an attribute, wrapping a
range of text, inserting a new element or any combination thereof.

These operations can be used to encode the mutations required to fix content
issues, and can be mixed into the Schematron XML notation as follows:

<sch:rule context="//span">

<sch:assert test="@class = ('strong', 'italic')">
<fonto:message>
A
<sch:value select="fonto:friendly-name(.)"/>

must have the class 'strong' or 'italic'. It has the class
<sch:value select="if (Qclass) then @class else 'No class'"/>
. This is wrong.
</fonto:message>
<fonto:fix name="set-attribute" value="strong"
label="Convert to Strong">
<fonto:fix name="set-attribute" value="italic"
label="Convert to Italic">
<fonto:fix name="unwrap-node" label="Unwrap this">
</sch:assert>
</sch:rule>

To make the report easier to parse, we have placed the message in an additional
element.

4.6. Ul

The soft-validation reports can be used as a list of tasks that an author should
process. As our authors are not all XML-experts, it is important to visualize as
much context as possible. To do this, we did the following:

1. The reports are visualized as cards in a side panel, allowing them to be visible
alongside the editor.

27

Soft validation in an editor environment

(¢’ Track changes ‘ Q Find +~ ‘ @ Preview

b 4

X This span is of class "yellowtext", which is not allowed inside chunk body.
4 Solve
A

Cc

1)

_|

C

v

m

O

v

@)

0

m

A

2. Clicking on a report highlights the element causing the report and brings it
into view in the editor.

(& Track changes Q Find v @ Preview

x

& This span is of class "yellowtext", which is not allowed inside chunk body.
= Solve

el

o=

(@]

—

G

BLOCK

Inhoud

1. 0-19 punten: je scoort in de rode zone. Maak bij elk hoofdstuk de voorbereidende
opdrachten uit de cursus Brugbouwen.
2. 20-29 punten: je scoort in de oranje zone. Overleg met je docent of je gaat

Brugbouwen.

3. 130-40 punten: }je scoort in de groene zone. Je hebt nog veel onthouden van de

basisschool. Sla Brugbouwen over.

3. All reports having one or more quick-fix operations available display a ‘solve’
button, which opens the quick-fix menu.

28

Soft validation in an editor environment

(€' Track changes ‘ Q Find v~ ‘ @ Preview

This span is of class "yellowtext", which is not allowed inside chunk body.

Solve

Convert to green text

ANLONYLS & X

Convert to orange text

Convert to red text

¥ Remove

L¥43d0dd

4. After resolving the error (using either the quick-fix menu or any other action),
the card shows a brief animation and is removed.

(' Track changes ‘ Q Find v ‘ @ Preview

b 4

& This span is of class "yellowtext", which is not allowed inside chunk body.
a4 Solve
Pl

(=

3]

—

C

.

m

0

Y

[¢)

0

m

~

Brugbouwen.

3. |30—40 punten: | je scoort in de groene zone. Je hebt nog veel onthouden van de

basisschool. Sla Brugbouwen over.

5. When all issues have been resolved, the editor reports this fact to the author.

29

Soft validation in an editor environment

(&' Track changes Q Find v @ Preview

X

i

wn

—{

A

(-

0

._{

=

A °

g No content issues
= All content complies with the validation rules.
O

pe)

O

)

m

A

5. Future work

5.1. Performance

At the moment, performance is highly dependent on the way the Schematron
rules and tests are written. A constraint such as preventing referencing unknown
ids can be written as this:

<rule context="Q@id-ref">
<let name="idref" value="."/>
<assert test="//*[Q@id=S$idref]/>
</rule>

This rule will be rewritten to this XPath: boolean(// *[@id-ref][let
Sidref := . return //*[Qid = S$idref]]).

The XPath will cause us to evaluate the comparison 0 (N2) times: we will scan
the whole document for id attributes once for every idref. Also, this query will
introduce childList dependencies on all of the elements in the document. Build-
ing and maintaining a lookup table for all nodes with an id attribute can speed up
these queries significantly.

5.2. Preventing worsening the document

In the current implementation, soft-validation rules never prevent any editing
operation. However, we might want to influence a number of actions (like copy/
paste or inserting new nodes) to prevent the document from getting less valid

30

Soft validation in an editor environment

according to these rules. An operation could be blocked if it ends up making the
document fail more soft-validation tests. This needs to be thoroughly user-tested
to identify the conditions where it would be useful to temporarily make the docu-
ment less valid (such as when pasting content from somewhere else, or when
splitting an “invalid” paragraph using the enter key in order to convert the indi-
vidual parts to a valid structure).

5.3. Using Schematron quickfix

A small schema has been whipped up to provide references to quick fix opera-
tions. In the future, these quick fix descriptions should be described using the
Schematron Quickfix schema[6].

5.4. Open sourcing

We are looking into making the XPath engine open source, possibly including the
dependency tracking mechanism. We expect it will have many applications out-
side of Schematron, like writing modern JavaScript apps that manipulate XML
documents, or any other data representing a DOM.

6. Conclusions

The requirements of a soft-validation engine operating in a dynamic environment
such as an editor are different from one reasoning over static documents.

Because changes in an editor are usually localized, we should not need to re-
process a full document every single keystroke. Using mutation records and
dynamic dependency tracking as a way to mark queries on the DOM as dirty, we
can use the edits to determine a smaller set of possibly affected queries.

Soft validation is a great help in guiding authors in writing “good” content.

By considering the soft-validation report as a “to do list”, an author can keep
track of their progress. By providing quick-fixes, the author always knows what
to do and can efficiently resolve most content issues.

Bibliography

[1] Information technology — Document Schema Definition Languages (DSDL)
— Part 3: Rule-based validation, Schematron, International Standard ISO/IEC
19757-3, Geneva, Switzerland : ISO

[2] XML Path Language (XPath) 1.0. W3C Recommendation, 16 November 1999.
Ed. James Clark and Steve DeRose https://www.w3.org/TR/xpath/

31

Soft validation in an editor environment

[3] DOM living standard, 19 Januari 2017 on MutationRecord. https://
dom.spec.whatwg.org/#interface-mutationrecord

[4] XSLT and XPath Optimization, March 2001, Ed. Michael Kay. http://
www.saxonica.com/papers/xslt_xpath.pdf

[5] XML Path Language (XPath) 3.1. W3C Candidate Recommendation, 16
December 2016. Ed. Jonathan Robie, Michael Dyck, and Josh Spiegel. https://
www.w3.org/TR/xpath-31/

[6] Schematron quickfix. Ed. Nico Kutscherauer. http://www.schematron-
quickfix.com/

32

