A note on Editor performance

A story on how the performance of Fonto came to be what it is,
and how we will further improve it

Stef Busking

FontoXML
<stef.busking@fontoxml.com>

Martin Middel
FontoXML
<martin.middel@fontoxml.com>

Abstract

This paper will discuss a number of key performance optimizations made
during the development of Fonto, a web-based WYSIWYM XML editor. It
describes how the configuration layer of Fonto works and what we did to
make it faster. It will also describe how the indexing layer of Fonto works
and how we improve it in the future.

1. Introduction

1.1. How does Fonto work?

Fonto is a browser-based WYSIWYM! editor for XML documents. It can be con-
figured for any schema, including many DITA specializations, JATS, the TEI, doc-
book and more. Fonto configuration consists of three parts:

1. How do elements look and feel (the schema experience)
2. How can they be mutated (the operations)
3. The encompassing user interface of Fonto

The schema experience is specified as a set of rules that assign specific properties
to all nodes matching a corresponding selector. These selectors are expressed in
XPath.

Operations also make use of XPath in order to query the documents. Effects
are defined either as JavaScript code, or using XQuery Update Facility 3.0.

The user interface of Fonto has several areas (e.g., the toolbar, sidebar and cus-
tom dialog boxes) in which custom UI can be composed from React components.
These can observe XPath expressions to access the current state of the documents

1What You See Is What You Mean

A note on Editor performance

and be updated when it changes. The documents themselves are rendered recur-
sively by querying the schema experience for each node and generating HTML
appropriate for the resulting configuration.

1.2. What is performance?

When a single key is pressed, Fonto needs to update the XML and then update all
related Ul This includes updating the HTML representation of the documents,
recomputing the state of all toolbar buttons based on the applicability of their
operation in the new state, and updating any other UI as necessary.

Typically, such updates involve looking up the values of various configured
properties for a number of nodes (by re-evaluating the associated XPath selectors
against those nodes) and/or executing other types of XPath / XQuery queries. In
order to keep the editor responsive, these updates need to be implemented in a
way that scales well with respect to both the complexity of the configuration as
well as the sizes of the documents being edited. In order to keep Fonto easy to
configure, we should not place too many requirements on the shape of this con-
figuration. This means Fonto has to deal with a wide range of possibilities regard-
ing the number of selectors etc.

When we started Fonto, we considered documents of around 100KB to be
‘pretty big’, and these could be pretty slow to work with. After heavy optimiza-
tion, we now have workable editors that load documents of multiple megabytes?,
using (automatically updating) cross references, (automatic) numbering of sec-
tions and more. This paper details a few of the most significant optimizations we
have applied in order to get to that point.

2. Accessing schema experience configuration

As described in the introduction, Fonto uses XPath selectors to apply a set of
properties to nodes. We call the combination of a selector and a value a declara-
tion.

Example of the look and feel configuration of the “p” element:

configureAsBlock (sxModule, 'self::p');

This configuration does the following internally:

2Using just-in-time loading to only load a small subset, this even scales to working in collections total-
ing in the hundreds of megabytes, but that could be considered cheating.

A note on Editor performance

Table 1. Summary of properties set for a paragraph

Property Value
Automergable false
Closed false
Detached false
Ignored for navigation false
Removable if empty true
Splittable true
Select before delete false
Default Text Container none
Layout type block
Inner layout type inline

... (a total of 23 properties, plus optionally up to 35 more that are not set|...

automatically)

There are about 23 properties being configured for a single paragraph, each speci-

fying whether the paragraph may be split, how it should interact with the
keys, how it behaves when pressing enter in and around it, etcetera.

2.1. Orthogonal configuration

arrow

A number of these properties can be set individually, such as the background
color or the text alignment of an element. This allows for a drastic reduction in
the amount of selectors. Previously, when configuring some paragraphs to have a
different background color compared to the ‘generic’ paragraph, all of the ‘the
same’ properties also needed to be configured. By adding a way to configure sin-
gle properties, reductions of more than three quarters of the configuration were

seen.

A note on Editor performance

Table 2. Orthogonal configuration

Without using Orthogonal Configura-
tion

With Orthogonal configuration

configureAsBlock (
sxModule,
'self::p',
'paragraph'

)

configureAsBlock (
sxModule,
'self::p[@align="right"]"',
'paragraph with right alignment',
{align: 'right'}
)

configureAsBlock (
sxModule,
'self::p',
'paragraph’

)i

configureProperties
sxModule,
'self::p[@align="right"]"',
{
markupLabel:
right alignment’',
align: 'right'
}
) i

'paragraph with

2 x 23 properties, plus one, for the
alignment = 47

23 properties, plus one, for the align-
ment, makes 24

For a property like how an element behaves when computing the plain text value
from it, the registry may look like this, for the p element. Note that multiple of
these selectors are automatically generated.

Table 3. Properties defined for a paragraph

Selector

Plain text behavior|Priority

self::p and

parent::*[(
self::list-item
) and

parent::* [
self::1list]
@list-type="simple"]]]

interruption 2

and @continued-from]

1]

self::p and parent::*[(self::list-item) and
parent::*[self::list[@list-type="roman-upper"

interruption

<18 rows omitted for clarity>

self::p[parent::def]

interruption

self::p

interruption

self::*[parent::graphic]

removed

A note on Editor performance

2.2. Selector buckets

As shown earlier, selectors are used extensively in the configuration layer. For
some selectors, it is quite obvious to see that a given node will never match a
given selector. For example, the selector self::p may never match the <div />
element.

We leverage this knowledge by indexing the selectors that are used in configu-
ration by a hash of the kind of nodes they may ‘match’ their ‘buckets’. We cur-
rently use node type buckets - derived from the nodeType values defined in the
DOM spec|[8] - and node name buckets derived from the qualified names of ele-
ments.

Table 4. Buckets

Selector Bucket

self::p name-p

self::element () type-1

Gclass type-1 (only elements may have attributes)

self::p or self::div|type-1

self::comment () type-8

self::* No bucket: both attributes and elements may match to
this selector

Note that some of these selectors could also be expressed as a list of more specific
buckets. For example, self::* could be stored under both the bucket for type-1
as well as the one for type-2 For simplicity, and to keep lookups by bucket as
efficient as possible, we have currently limited our implementation to a single
bucket per selector. We may revisit this decision in the future.

We then group the selectors that configure a certain property by their bucket.
By computing the same hash(es) that may apply for a node, we drastically reduce
the amount of selectors that need to be tested against any given node.

2.3. Selector priority / optimal order of execution

2.3.1. Conceptual Approach

An application may have the following configuration for the “italic font” property:

A note on Editor performance

Table 5. Italic font per selector

Selector Value
self::cursive true
self::quote true

self::plain-text|false

<default> none

The ordering of selectors is defined using a specificity system inspired by CSS: We
group and count the amount of “tests” in an selector: a selector with two attribute
tests is more important than one with a single attribute test. Additionally, we
allow applications to define explicit priorities. Specificity is used only if priorities
are omitted or to break ties when priorities are equal.

The selectors defined by this piece of configuration will be evaluated in order
and the value of the first match will be returned. In this example, a <p /> element
will have no configuration for the “slant” property, while the <quote /> will set it to
‘true” and the <plain-text /> will set it to ‘false’.

2.3.2. Optimization

The ordering of declarations does not mean all of these selectors have to be execu-
ted in that specific order. In the table defining the properties set for a paragraph,
all of the high-priority selectors have a very low probability of matching. The
much simpler self::p selector is more likely to match. To generalize this prob-
lem, we use a Bayesian predictor for the likeliness of whether a selector will
match a given node.

The hypothesis (H) is that this selector matches. Evidence (E) is the hash
assigned to the node. This is configurable, but usually the name of the element we
input. We want to compute the probability of H given E: the selector matches for

this hash. Bayes theorem gives us that P(H | E) = W where P(E|H)

is the percentage of matches of this selector that match this hash. Basically, this is
the amount of times the selector matched a similar element, continuously
approximated based on previous results. P(H) is the percentage of matches of this
selector overall, and P(E) is the percentage of results of any selector for a node
with this hash. Because we will compare these scores for the same hash, the P(E)
part is constant and can be omitted.

We use the statistical probability of the selectors we will evaluate to determine
an optimal order of execution of selectors. If we evaluate all selectors in order of
decreasing likeliness, we only need to check selectors with higher priority but a
different value in case of a match. In pseudocode, this becomes:

A note on Editor performance

Let declarations be all declarations that may match the input, based on
buckets.
Sort declarations based on their priority, their specificity and lastly
on order of declaration.
Let skippedDeclarations be an empty list.
Let declarationsInOrderOfLikeliness be declarations, sorted using the
Bayesian predictor from most likely to least.
For likelyDeclaration of declarationsInOrderOflLikeliness do:
If (likelyDeclaration.selector does not match input) continue;
// We have a likely match, see whether it was the ‘good’ one
For declaration of declarations do:
If (declaration.selector is equal to likelyDeclaration.selector)
// The likely declaration is the most matching one
Return likelyDeclaration.value;
If (declaration.value is equal to likelyDeclaration.value)
// No need to evaluate this selector now,
// it would result in the same value
Add the declaration to skippedDeclarations, continue;
// This higher-priority declaration would result in a different value
If (declaration.selector does not match the input) continue;
// This declaration applies, unless one of the skipped declarations
(with higher priority) matches as well
For skippedDeclaration of skippedDeclarations do:
If (skippedDeclaration.selector matches input)
Return likelyDeclaration.value
// We have no declaration that is deemed more important
Return declaration.value

Fonto ends up querying a large number of declarations for all nodes in the loaded
documents as a result of rendering and other initial processing. This means that
the initial set-up will make sure that the Bayesian predictor is sufficiently trained
by the time the user starts editing.

2.3.3. Performance impact

Worst case: This algorithm has the same worst-case performance as the imple-
mentation without it. The worst case will be triggered when the most likely
match is also the least important one, and all preceding declarations point to
another value. In this case, the algorithm will be forced to evaluate every preced-
ing selector.

Best case: The most likely selector is preceded by a large amount of more
complex selectors, which point to the same value. The algorithm will only evalu-
ate a single selector: the most likely one. Because these selectors are prefiltered by
their bucket, this is the more likely case: it is more common to configure a num-
ber of paragraphs to have the same declared value in for instance enter behaviour
than all having different values.

A note on Editor performance

2.3.3.1. Measurement

We conducted a performance test of the initial render of a JATS document of
721KB, containing 18826 nodes in the configuration that was highlighted in the
table describing the properties set for a paragraph. These performance tests meas-
ured how long it took to render all of the content to html elements using Chrome
81 in Fonto 7.9.0. Tests were repeated 4 times.

Table 6. Performance of the Bayesian predictor

Amount of XPaths evaluated
Without the Bayesian predictor 121575
With the Bayesian predictor ~ 109964

With the optimization, we see a 9.5% reduction in the amount of XPaths that are
being evaluated. The total load time is reduced by three seconds. This is a signifi-
cant improvement over the old situation.

Furthermore, we measured how many times certain XPath expressions were
executed. The following expressions stood out:

Table 7. XPaths with a fewer executions with the Bayesian predictor:

Selector Execution |Total time|Execution |Total time
count spent execut-|count spent execut-
without [ing this|with pre-|ing this
predictor |expression |dictor expression

self::*[1797 93 ms 900 42 ms

parent::*[

self::term-sec]|
not (ancestor::abstract or
ancestor: :boxed-text)]1]]
and not (
self::node() [
not (self::sec or
self::term-sec)]

)

self::label 79 2ms 1662 47 ms
self::label] 79 3 ms 1 (Too low to
parent::abstract] measure)
self::label[parent::fn] 1733 60 ms 1091 42 ms
self::named-content| 2173 160 ms 1174 96 ms

@vocab="unit-category"]

A note on Editor performance

self::named-content| 325 22 ms 538 56 ms
@vocab="specification"]

From this table, the label selectors stand out the most: the self::1label selector
grew both in execution count and in the total spent. This effect is explained by the
next selector: self::label[parent::abstract]. This selector is part of a set of
twelve similar selectors that went for 79 executions to a single one. The Bayesian
predictor learned that the self::label select is more likely to match than the
self::label[parent:abstract] and prevents executing it.

2.3.3.2. Comparison to another approach

In order to verify the results of the Bayesian predictor, we compared it to another,
similar approach. Instead of using the predictor as the main sorting function, use
the 'complexity of a selector. In other words, consider 'simpler' expressions to be
more likely to match than 'complex’ selectors. In order to approximate the 'com-
plexity' of a selector, use the specificity algorithm as described in an earlier sec-
tion.

This gave us the following results for the selectors mentioned in the previous
chapter:

Total amount of XPaths executed: 111864.

Table 8. Performance metrics of using selector specificity as likeliness

Selector Execution count with-|Total time spent executing
out predictor this expression

self::¥[899 43 ms

parent::*[

self::term-sec|
not (ancestor: :abstract or
ancestor: :boxed-text)]1]]
and not (
self::node() [
not (self::sec or
self::term-sec)]

)

self::label 1684 46 ms
self::label] 0 -
parent:abstract]

self::named-content [2165 175 ms

@vocab="unit-category"]

The table gives interesting results: the self::1label selector is executed many
times, but the self::label[parent:abstract] selector is never executed at all.

A note on Editor performance

However, the moderately complex self::named-content[@vocab="unit-
category"] selector is evaluated way more often than when using the Bayesian
predictor.

When going through the configuration of this editor, this can be explained.
The 'normal' <named-content /> element is expected to never occur in the editor
in question. It is configured to never be rendered. However, the more special
<named-content /> elements that have additional attributes set are expected to
occur, and are given a number of additional visualization properties, such as
widgets, additional options for a context menu etcetera.

In essence, the self::named-content occurs few times in the total configura-
tion, while the specific versions occurs many times. However, some specific ver-
sions of this element occur more than others; the Bayesian predictor takes
advantage of this while this approach can not hold it into account.

2.4. Deduplication of duplicate property values

This best case is further leveraged by deduplicating duplicate values. In some
cases, the configuration API allows one to input instances of functions. We
rewrote these APIs to allow for better memoization: all function factories attempt
to return the same function when called multiple times with the same arguments.

2.5. Related work

While the selector-to-value configuration in Fonto looks like how XSLT links up
selectors to templates, they differ on a fundamental point: Templates in XSLT are
usually unique to a selector; they see little reuse. The value space of a configura-
tion variable in Fonto is usually small: they mostly consist of booleans and any
non-discrete data is grouped nonetheless by the deduplication mechanisms
described earlier. This makes optimizations like the Naive Bayes optimization
work out of the box.

Lumley and Kay present optimizations for the XSLT case. In particular, they
highlight the common use of DITA-class-substring selectors in DITA cases. How-
ever, such selectors and associated optimizations are not as applicable in Fonto.
While Fonto does offer an abstraction® over the dita-class infrastructure for DITA-
based editors, we advise against using it for configuration. This is because the
class hierarchy usually produces unwanted results when used directly in our
orthogonal configuration hierarchy and doing so may introduce a lot of complex-
ity in the configuration as specific values frequently need to be overridden for
specific sub-classes.

An example of this problem is found in specializing the list item element: not
all specializations of the list item should be rendered or behave like list items:

3 https://documentation.fontoxml.com/api/latest/fonto-dita-class-16324219.html

10

A note on Editor performance

Take for example the <consequence /> element in the Dita hazard domain. These
elements should not be rendered like lists and they should not be indentable
using the tab key, nor splittable using enter.

Because of these reasons, and because the dita inheritance structure does not
give any pointers on how to create those elements, the configuration is most often
denormalized to simply using node names.

3. Processing XML at interactive speeds

3.1. General XPath performance

The main performance bottleneck of Fonto is the performance of running XPath
queries. XPaths is not only used to retrieve the schema experience configuration,
but also to run generic queries. In order to speed up most queries, most of the
optimizations described in the work of Kay[5] are implemented.

3.1.1. Outermost

Furthermore, a number of specific optimizations are implemented. One of the
strongest optimizations regards the ‘outermost’” function, which returns the ‘high-
est level’ nodes from an input set. An example usage in Fonto is find and replace,
which runs a query similar to following to determine the searchable text of an ele-
ment:

descendant: :node () [

self::text() or

(self::paragraph or self::footnote)
] => outermost ()

This query returns all textnodes that are directly in a “block’, and any elements
that are also a ‘block’. Consider the following XML:

<xml>
<paragraph>
A piece of text
<footnote>text is a string of characters</footnote>
with a footnote in it
</paragraph>
</xml>

When evaluating this query in a naive way, the path expression will result in a list
of all descendants that match its filter, including all of the descendants that will
be removed by the ‘outermost” function.

A common optimization in functional languages like XPath is to perform lazy
evaluation. We implemented this using a generator pattern inspired by LINQ*
However, lazy evaluation alone is not enough in this case. To further optimize

11

A note on Editor performance

outermost, we pass a hint into the generator for the descendant axis, indicating
whether it should traverse the descendants of the previous node returned or skip
to the next one.

Consider the expression above, which consists of three parts: a descendant
part, a filter part and the outermost function. Using lazy evaluation, we start at
the outermost function, which requests the first node from the expression that
tfeeds it. To compute this, the filter expression requests nodes from the descendant
expression until it finds one that matches the filter, which is returned to the outer-
most function. The outermost function is not interested in the descendants of this
node, so it now passes the "skip descendants" hint when requesting the next
node. This hint, passed through the filter expression to the descendant expres-
sion, prevents the latter from traversing the subtree of the matching node and
instead skips to the following node.

As find and replace recursively applies the query for text nodes and sub-
blocks, this optimization basically changes the performance of that from
O(nlog(n)) complexity to O(n), as every subtree is now only traversed once
instead of for each ancestor.

3.2. Schema validity

Fonto checks the validity of XML to the schema by converting each content model
into a nondeterministic finite automaton (NFA), similar to the approach described
by Thompson & Tobin[7]. We perform several optimizations to ensure this valida-
tion can happen quickly enough to not seriously impact editor performance.

Before a schema is loaded in Fonto, it is pre-processed in an offline compila-
tion step. This converts the schema to a JSON format and simplifies the content
model expressions. We first remove any indirections such as substitution groups
and redefinitions. We then apply a number of rewrite rules to reduce these con-
tent models to equivalent but simpler models. For example, if any item within an
<xs:choice> is optional, the entire choice can be considered optional, and all
items within can be marked as required (minOccurs="1"). If multiple items
within the choice were optional, this reduces the number of empty transitions
that have to be created in the resulting NFA.

For example, the schema structure:

<xs:choice minOccurs="1">
<xs:element name="employee" type="employee" minOccurs="0"/>
<xs:element name="member" type="member" minOccurs="0"/>
</xs:choice>

Is equivalent to:

4 https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/ling/

12

A note on Editor performance

<xs:choice minOccurs="0">
<xs:element name="employee" type="employee" minOccurs="1"/>
<xs:element name="member" type="member" minOccurs="1"/>
</xs:choice>

When compiling the reduced schema to an NFA we apply a few optimizations
over the Thompson & Tobin algorithm in order to further reduce the size of the
resulting automaton. Firstly, all branches of a choice that each process a single
node (such as the “employee” and “member” branches in the example) are repre-
sented as a single transition. Large choices between multiple single-element
options are a fairly common occurrence in schemata we’ve seen used in Fonto.
This optimization reduces the number of possible paths in the NFA, reducing the
memory and execution time costs for computing possible paths during valida-
tion. In real-world schemata, such optimizations may be more significant. For
example, the content model of paragraphs usually consists of a repeating choice
between a number of inline elements.

Secondly, and again to reduce the size of the NFA, any repetition of a term T
with minOccurs="1" and maxOccurs="unbounded" is compiled to the automaton
for T followed by an additional empty transition back to the start. The original
Thompson & Tobin algorithm would build an NFA containing the automaton for
T twice (once required, once optional repeating).

Our implementation for applying the resulting NFAs to XML content makes
heavy use of pre-allocated typed arrays to store all state during traversal. Being a
garbage-collected language, manual memory management is not commonly con-
sidered in JavaScript applications. However, validation being a very hot code
path, preventing allocations serves both to avoid the performance overhead asso-
ciated with them, as well as the later cost of having garbage collection reclaim
those allocations. Ignoring the schema and NFA optimizations, manual memory
management alone has led to a significant performance improvement compared
to our implementation before these changes: applying a test NFA similar® to
<xs:any minOccurs="0" maxOccurs="unbounded" /> to a sequence of 10000
children went from around 111ms to just 17ms.

3.3. Indices

Many operations in Fonto applications require traversing parts of the DOM using
XPath queries. While most of these traversals are limited to a reasonably local
subset of nodes, there are some types of queries that have to traverse large num-
bers of nodes. In our experience, these most commonly take one of two shapes.
One is to find a specific element or set of elements based on the value of some of
their attributes, for instance, finding the target of a reference based on its xml:1id.

SThis particular test also involves determining all possible minimal traces through the NFA. Fonto can
use this information to synthesize[6] missing elements.

13

A note on Editor performance

Another is to find all descendant nodes of a certain type, often under some ances-
tor node, for instance, finding all footnotes in the document.

To prevent the full DOM traversal in answering these queries, it can help to
perform some of the work ahead of time. To this end, Fonto allows defining speci-
alized indices, which are then made accessible to XPath queries as functions that
return associated data given some key. Fonto currently has three types of index:

o The attribute index can be defined for any attribute name (local name and
namespace URI), and maps a given value to the set of nodes that have the
attribute set to that value.

* The bucket index can be defined for any bucket, as discussed in an earlier sec-
tion, and tracks all nodes matching that bucket that are currently part of any
loaded document

* The descendant index tracks the set of descendant nodes matching a given
selector under a specified ancestor. To make updates efficient, this selector is
currently severely limited in terms of the parts of the DOM it may refer to.

Internally, Fonto makes heavy use of mutation observers (as defined in the DOM
standard) and the resulting mutation records to represent changes in any of the
loaded documents. Indices interpret these mutation records to determine which
changes affect their data, and then update that data accordingly only if such
changes are found.

In our current implementation, all indices should be explicitly defined by the
application developer. We have considered automatically generating indices,
such as attribute indices for attributes using the xs:ID type, but found that many
schemata do not actually assign this type for their identifier attributes.

3.3.1. Indexing arbitrary computations

In addition to these indices, mutation records can be used to invalidate the
cached results of any DOM-based computation, including XPath evaluation[4].
This requires tracking that computation’s data dependencies in terms similar to
the relations described by the mutation records. While not an index in the tradi-
tional sense, the similarity in terms of implementation and integration with the
indices described above have led us to refer to this system as the callback index.
Summarizing from our earlier work, we use a facade between the computa-
tion and all DOM access to intercept these events and track corresponding
dependencies in terms of the corresponding mutation record type (either child-
List, attributes or characterData). When mutation records are processed, we match
them against these dependencies and signal (potential) invalidation of a compu-
ted value when the data depended on has changed. To avoid unnecessary work,
re-computation is not performed automatically, but only on demand. This usually
happens when the UI using the result is ready to update, instead of updating

14

A note on Editor performance

these values many more times than could ever be observed by any user. It also
avoids work in cases the Ul decides not to re-issue the computation, for instance
based on the result on another. For instance, the title of some figure in the docu-
ment outline does not need to be recomputed if the entire section containing that
figure is removed from the outline tree.

Both mutation records and raw DOM access operations can sometimes
present a rather coarse-grained view of changes / dependencies. For instance,
looking for a child element of a specific type may require visiting and examining
all children of the parent node. This means that the corresponding computation
may be invalidated unnecessarily if a node of a different type is inserted under
the same parent. We use two mechanisms to reduce such unwanted invalidations.

First, dependencies registered by the DOM facade can specify a test callback
in addition to the mutation record type. This test is evaluated against the changed
document if a mutation record is processed with the matching type. If the test
does not pass, the mutation record is ignored. We use this, for instance, to check
whether a childList change affected the “parent node” relation for a given node.

Second, for most axis traversals in XPath we pass the bucket of the correspond-
ing node test to the DOM facade. The resulting bucketed dependencies only inva-
lidate the computation result for changes that match the bucket in question. For
instance, the childList dependency for the selector child: :p only triggers invalid-
ation if a childList mutation record adds or removes <p> elements, not when only
other nodes are added or removed.

3.3.2. Indexing and overlays

In Fonto, both the DOM and indices use a system of overlays to represent a future
state of the DOM without actually mutating the original. For indices, these over-
lays are only initialized and then updated at the moments when the indices are
actually used. As Fonto computes many possible future states at any time (for
example, to determine the states of buttons in the toolbar), this avoids a signifi-
cant amount of work for operations that do not use indices.

Furthermore, the lazy initialization of overlays allows computations based on
the unmodified DOM to be re-used across different operations, as long as the
value is computed before any modifications are made. In practice, this happens a
lot. For example, tables use the callback index to derive a schema-neutral “grid
model” representation from the DOM nodes. They then mutate this model, which
in turn updates the schema-specific table DOM. As the entire table toolbar uses
the same initial state of the DOM to compute the state of its operations, we only
need to compute this grid model once. In fact, the same model has likely already
been computed and cached in the callback index in order to validate the result of
the previous operation, and is also used in rendering the table.

15

A note on Editor performance

3.3.3. Fonto versus XML databases

In general, XML databases solve similar problems in terms of using indexing to
make queries faster. However, the problem space differs in the following ways:

In Fonto, loading multiple megabytes of XML is a lot; we are on the web, so
data needs to be small enough to download quickly and as a result will always fit
in memory. In XML databases, gigabytes of XML is not rare and to be expected.
In Fonto, authors on a bad internet connection don’t want to wait ages for their
documents to load, so larger documents are usually cut up into smaller chunks,
which are loaded just in time for editing.

In Fonto, both queries and changes usually affect the same small part of the
document. Furthermore, changes happen frequently. In an XML database, both
changes and query subjects are often more spread-out. Because of this, our index-
ing approach needs to take frequent updates into account, and such updates need
to happen quickly enough for users not to notice any slowdown.

In XML databases, it is acceptable to build indices during load time. In Fonto,
the editor should be up and running as soon as possible. This means we can not
build a large index at start-up if computing that index takes a non-trivial amount
of time. Also, because Fonto usually does not run for a long time, it is probable
that an index will never be used.

The current cache invalidation approach so far fits that set of requirements. A
reusable result is often only computed when necessary, and forgotten when it no
longer applies. A larger computation can be spread out over multiple separately
indexed entries in order to make recomputation more efficient in cases where
only part of these are invalidated.

4. Conclusions

Lots of tricks are possible to make user-friendly authoring of XML fast, even in
JavaScript and webbrowsers. When Fonto was two years old, we received a lot of
feedback on the performance of documents of 100KB of XML. Currently, we have
clients working with single documents ranging into the megabytes, configured
using complex schemata like JATS or the TEI standards. Using approaches like
JIT loading and chunking, we have clients working with tens of thousands of
documents which we are unable to even download and keep in memory simulta-
neously.

5. Future work

At Fonto we continue to move to declarative formats to specify the configuration,
behavior and Ul of the editor. We prefer to use existing standards, and continue
to improve and extend our XPath, XQuery and XQUF implementations. For con-
figuration, the closest analogue in terms of declarative formats seems to be CSS.

16

A note on Editor performance

However, we prefer to keep using XPath for our selectors. We also have several
property types that go far beyond the property values commonly found in CSS,
including the way the appearance of elements is defined as a composition of vis-
ual components and widgets. It is likely we will need to develop a custom format
to support this combination.

In mutating the XML DOM, moving to XQUF has the additional advantage
that we can use the callback index to track the dependencies of an operation, and
therefore only recompute its effect (represented as a pending update list) and
state (based on the validity of the resulting DOM) when required. In addition to
converting current JavaScript-based primitives, this requires allowing other bits
of state to be dependency-trackable in the same way as the DOM, including the
current selection.

To minimize work even further with minimal impact on the way developers
configure Fonto, we wish to further expand indices and the callback index into a
framework for general incremental computation. This requires dependencies
between index entries (already partially implemented), which allow for memoi-
zation by isolating one computation from another. To propagate invalidations
caused by DOM changes efficiently, we also need to add a way to stop this propa-
gation when the new result for some computation equals the previous value, as
that means results depending on that value can be reused.

Bibliography
[1] XQuery update facility 3.0 https://www.w3.0rg/TR/xquery-update-30/

[2] A minimalistic XPath 3.1 implementation in pure JavaScript https://
github.com/FontoXML/fontoxpath

[3] https://drafts.csswg.org/selectors-4/#specificity-rules

[4] Martin Middel. Soft validation in an editor environment. 2017. http://
archive.xmlprague.cz/2017/files/xmlprague-2017-proceedings.pdf

[5] Michael Kay. XSLT and XPath Optimization http://www.saxonica.com/
papers/xslt xpath.pdf

[6] Martin Middel. How to configure an editor. 2019. https://
archive.xmlprague.cz/2019/files/xmlprague-2019-proceedings.pdf

[7] Thompson, Henry S., and Richard Tobin. "Using finite state automata to
implement W3C XML schema content model validation and restriction
checking." Proceedings of XML Europe. Vol. 2003. 2003.

[8] Various authors. The DOM Living Standard. Last updated 16 January 2020.
https://dom.spec.whatwg.org/

17

